当前位置: > 证明不等式[(a+b)/2]2≤(a2+b2)/2...
题目
证明不等式[(a+b)/2]2≤(a2+b2)/2

提问时间:2020-11-01

答案
作差法:[﹙a+b﹚/2]²-[﹙a²+b²﹚/2]
原式=[﹙a+b﹚²/4]-[﹙a²+b²﹚/2]
=﹙a²+2ab+b²-2a²-2b²﹚/4
=﹣[﹙a²-2ab+b²﹚/4]
=﹣¼﹙a-b﹚²
∵﹙a-b﹚²≥0
∴﹣¼﹙a-b﹚²≤0
∴[(a+b)/2]²≤(a²+b²)/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.