当前位置: > 已知椭圆a2/X2+Y2/b2=1(a>b>0)的离心率e=根号3/2,连接椭圆的四个顶点得到的菱形的面积为4求椭圆方程...
题目
已知椭圆a2/X2+Y2/b2=1(a>b>0)的离心率e=根号3/2,连接椭圆的四个顶点得到的菱形的面积为4求椭圆方程

提问时间:2020-10-31

答案
离心率e=√3/2 设b=x 则 有a^2=b^2+c^2 得a=2x
根据题意知
菱形的面积可写为
2ab=4x*x=4 得x=1 即b=1 a=2
∴方程为x^2/4+y^2=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.