当前位置: > 若两相异直线L1:ax+by-1=0和L2:mx+ny-1=0的交点为P(3,2),求经过两点(a,b),(m,n)的直线L的方程...
题目
若两相异直线L1:ax+by-1=0和L2:mx+ny-1=0的交点为P(3,2),求经过两点(a,b),(m,n)的直线L的方程

提问时间:2020-10-31

答案
因为L1与L2交于(3,2),因此
3a+2b-1=0 ,且 3m+2n-1=0 ,
这说明,点(a,b)、(m,n)均满足方程 3x+2y-1=0 ,
所以,所求直线L的方程为 3x+2y-1=0 .
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.