题目
已知a>0,函数f(X)=lnx-ax2,x>0 (1) 当a=1/8时,证明:存在x0属于(2,正无穷),使f(x0)=f(3/2)
(3),若存在均属于区间【1,3】的α,β,且β-α>=1,使f(α)=f(β),证明:(ln3-ln2)/5
(3),若存在均属于区间【1,3】的α,β,且β-α>=1,使f(α)=f(β),证明:(ln3-ln2)/5
提问时间:2020-10-31
答案
1),证明:得到定义域为(0,正无穷)
设F(x)=f(x)-f(3/2)
F'(x)=1/x-x/4=(4-x^2)/4x=0时,x=2,
当00,
F(10)
设F(x)=f(x)-f(3/2)
F'(x)=1/x-x/4=(4-x^2)/4x=0时,x=2,
当00,
F(10)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点