当前位置: > 求函数F(x)=∫(x,x+1)(4t^3-12t^2+8t+1)dt在区间[0,2]上的最大值与最小值...
题目
求函数F(x)=∫(x,x+1)(4t^3-12t^2+8t+1)dt在区间[0,2]上的最大值与最小值
(x,x+1)中,x是下限,x+1是上限

提问时间:2020-10-31

答案
先求极值:f(x) = ∫[x,x + 1] (4t³ - 12t² + 8t + 1) dtf'(x) = [4(x + 1)³ - 12(x + 1)² + 8(x + 1) + 1] - [4x³ - 12x² + 8x + 1]= 12x(x - 1)f''(x) = 24x - 12f'(x) = 0=> x(x -...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.