题目
∫cos^2(ωt+ψ)sin(ωt+ψ)dt 这个的不定积分怎么求?谢谢啦
提问时间:2020-10-31
答案
设ωt+ψ = θ => ωdt = dθ => dt = (1/ω)dθ
∫cos²(ωt+ψ)sin(ωt+ψ) dt = ∫cos²θsinθ * (1/ω)dθ
= (1/ω)∫cos²θ d(-cosθ)
= (-1/ω)*(1/3)cos³θ + C
= [-1/(3ω)]cos³(ωt+ψ) + C
∫cos²(ωt+ψ)sin(ωt+ψ) dt = ∫cos²θsinθ * (1/ω)dθ
= (1/ω)∫cos²θ d(-cosθ)
= (-1/ω)*(1/3)cos³θ + C
= [-1/(3ω)]cos³(ωt+ψ) + C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1如图,在直角三角形ABC中,角ACB等于90度,角A等于22.5度,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE等于CF,连接BF,DE,线段BF和DE有什么关系?并说明
- 2形容做事之前认真思考做事有把握的成语
- 3如图m取不等于0或1的任意实数时,抛物线y=[(m-1)/m]x^2+(2/m)x-(m-3)/m在平面直角坐标系中都过两个定点,这两个定点间的距离为_____.
- 4永恒的这一瞬间用英文怎么说
- 5函数y=3x-2的图像和x轴的交点为A,和函数y=x+4的图像交点为B,坐标原点为O,则△AOB的面积是
- 6求VB高手写出下列数学表达式的vb算术表达式,急,
- 7There is-------- knocking at the door Go and see who it is 怎么解 为什么不用anybody 求详解
- 8已知OABC为同一直线上的四点,AB间距离为L1,BC间距离L2,一物体自O点由静止匀加速运动,依次经过ABC,已知AB与BC段所用时间相等,求OA距离?
- 9度假的英语短语?
- 10长江黄河输送水的工程是什么?
热门考点
- 1用一根铁丝围成一个边长是8分米的正方形,如果把它拉成平行四边形,面积减少了16
- 2离子方程式:CO32- +CO2+H2O=HCO3-
- 3小明妈妈计划早上6点~7点到市场完成买菜,他从家出发时发现时钟的时针和分针成110°,回来时也是110°
- 4设全集U=R,M={m|方程mx2-x-1=0有实数根},N={n|方程x2-x+n=0有实数根},则(CUM)∩N=_.
- 5there be句型造句(五个)
- 6我没有答完试卷因为我没有时间了(用上run out of 造句)
- 7I should have listened to you yesterday.为什么加HAVE
- 8分别用弧度制表示下列角的集合 (1)终边落在x轴上的角; (2)终边落在y轴上的角.
- 9英语翻译
- 10王叔叔想用一笔钱年利率为2.8%的3年期的国库券,如果他想3年后本息和为21680元,现在应买这种国库券多少元