题目
如图,四棱柱E-ABCD中,EA⊥平面ABCD,AB平行DC,AD=AE=CD=2AB,DA⊥AB,M是EC的中点
(1)求证:平面BCE⊥平面DCE
(2)求二面角M-BD-C平面角的正弦值
要过程
(1)求证:平面BCE⊥平面DCE
(2)求二面角M-BD-C平面角的正弦值
要过程
提问时间:2020-10-31
答案
(1)
取ED中点N、CD中点H,则:
三角形ABE与三角形BCH全等,得:
BE=BC
得:BM⊥EC、且四边形ABMN是平行四边形【可以证明是矩形】,从而有:
BM⊥平面DCE
则:
平面BCE⊥平面DCE
(2)
建议用空间坐标系来解决.
取ED中点N、CD中点H,则:
三角形ABE与三角形BCH全等,得:
BE=BC
得:BM⊥EC、且四边形ABMN是平行四边形【可以证明是矩形】,从而有:
BM⊥平面DCE
则:
平面BCE⊥平面DCE
(2)
建议用空间坐标系来解决.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点