当前位置: > 一道高中不等式证明题...
题目
一道高中不等式证明题
已知正数x,y,z满足x+y+z=1
求证:x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)>=1/3

提问时间:2020-10-31

答案
由柯西不等式:[(y+2z)+(z+2x)+(x+2y)][x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)]>=(x+y+z)^2=1且有(y+2z)+(z+2x)+(x+2y)=3(x+y+z)=3所以x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)>=1/3证毕.注:本题为2009年浙江省高考数学自选模...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.