当前位置: > 高数中,如何证明arctanx和x是等价无穷小函数...
题目
高数中,如何证明arctanx和x是等价无穷小函数

提问时间:2020-10-31

答案
楼上用罗比达法则来做也不能说不对,但是单就这个简单的问题来说,用比较复杂的工具来处理是不太合适的,而且一般教材上等价无穷小的概念早于导数的概念出现.所以这里最好不要涉及求导.
第一步,lim[(tanx)/x]=1,(x->0),这个极限你应该知道的,所以tanx~x (x->0)
第二步,令arctanx=u,x->0,即u->0,所以tanu~u (u->0)
第三步,tanu=tan(arctanx)=x,带入上面tanu~u就是,arctanx (x->0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.