当前位置: > f(x)具有连续的二阶导数f,(x),证明f,(x)=[f(x+h)+f(x-h)-2f(x)]/h^2 (h趋于0)...
题目
f(x)具有连续的二阶导数f,(x),证明f,(x)=[f(x+h)+f(x-h)-2f(x)]/h^2 (h趋于0)

提问时间:2020-10-31

答案
证明:因为f(x)具有连续的二阶导数,由拉格朗日定理
f(x+h)-f(x)=hf'(x+t1h)①
f(x)-f(x-h)=hf'(x-t2h)②
(0①-②得f(x+h)+f(x-h)+2f(x)=[f'(x+t1h)-f'(x-t2h)]h
对y=f'(x)在(x-t2h,x+t1h)上使用拉格朗日定理
[f'(x+t1h)-f'(x-t2h)]h=f''(k)(t1+t2)h^2,
(x-t2h所以[f(x+h)+f(x-h)-2f(x)]/h^2 =f''(k)(t1+t2)
因为h趋于0,所以k趋于x
故[f(x+h)+f(x-h)-2f(x)]/h^2 =f''(x)(t1+t2)
只能到这了.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.