题目
设T为正交阵,x为n维列向量,若|T|
1,设T为正交阵,x为 n 维列向量,若 |Tx| = 2,则 |x|=?
2,设A为 n 阶是对阵矩阵,证明:A是正定矩阵的充分必要条件是,存在正定矩阵B,使得:A = B.B
3,已知矩阵 A={(0,x,1),(0,2,0),(4,0,0)}有三个线性无关的特征向量,则 x=?
1,设T为正交阵,x为 n 维列向量,若 |Tx| = 2,则 |x|=?
2,设A为 n 阶是对阵矩阵,证明:A是正定矩阵的充分必要条件是,存在正定矩阵B,使得:A = B.B
3,已知矩阵 A={(0,x,1),(0,2,0),(4,0,0)}有三个线性无关的特征向量,则 x=?
提问时间:2020-10-31
答案
1.|x|=2 (对于任意正交矩阵T和与之同阶的向量x有|Tx|=|x|)
2.必要性:设l(1),l(2),...,l(n)是正定矩阵A的特征值,则存在n阶正交矩阵P,使得
A= P diag(l(1),l(2),...,l(n)) P'
令(sqrt()表示开平方)
B= P diag(sqrt(l(1)),sqrt(l(2)),...,sqrt(l(n))) P'
则B是正定矩阵且A=B^2.
充分性:如果A=B^2,其中B正定,则x'Ax = x'B'Bx = |Bx|^2 >= 0,等号成立当且仅当Bx=0,因为B可逆,故当且仅当x=0,因此A是正定的.
3.x=0.因为A的特征多项式为φ(λ)=(λ+2)(λ-2)^2,它有三个线性无关的特征向量,则属于特征值2的特征子空间是2维的,因此A的最小多项式是(λ+2)(λ-2),即A^2=4I,比较此等式两端得x=0.
2.必要性:设l(1),l(2),...,l(n)是正定矩阵A的特征值,则存在n阶正交矩阵P,使得
A= P diag(l(1),l(2),...,l(n)) P'
令(sqrt()表示开平方)
B= P diag(sqrt(l(1)),sqrt(l(2)),...,sqrt(l(n))) P'
则B是正定矩阵且A=B^2.
充分性:如果A=B^2,其中B正定,则x'Ax = x'B'Bx = |Bx|^2 >= 0,等号成立当且仅当Bx=0,因为B可逆,故当且仅当x=0,因此A是正定的.
3.x=0.因为A的特征多项式为φ(λ)=(λ+2)(λ-2)^2,它有三个线性无关的特征向量,则属于特征值2的特征子空间是2维的,因此A的最小多项式是(λ+2)(λ-2),即A^2=4I,比较此等式两端得x=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动). (1)如图1,当点M在点B左侧时,请
- 2把直线y=-2x沿y轴向上平移2个单位长度,所得直线的函数关系式为_.
- 3梨树桃树杏树为什么先开花
- 4Where is our monitor?I think she____(clean)the library with other students
- 5比喻和比作的区别
- 6同窗的同义词是什么?
- 7正方体ABCD-A1B1C1D1中,平面ACD1与平面BB1DD1的位置关系
- 8“微分方程的界分为两类:通解和特解”这句话对吗?
- 9已知焦点在坐标轴上的双曲线,它的两条渐近线方程为y±3x=0,焦点到渐近线的距离为3,求此双曲线的方程.
- 10一元一次方程的解决问题到底应该怎么学
热门考点
- 1inspection 和checking之间有什么区别
- 2给出一个三角形的两角及一边,有两种情况,分别是两角及( )或两角及其中一角的( )两种情况
- 3如果一个多边形的最小的一个内角为120°,比它稍大的一个内角为125°,以后依次每一个内角比前一个内角大5°,且所有内角和与最大的内角的度数之比为63:8,求这个多边形的边数及最大内
- 4他喜欢午餐吃鸡肉,胡萝卜,鸡蛋.用英语怎么说?
- 5while 后面接动词什么形
- 6500字作文《我尝到了——的滋味》,
- 7用“纳闷、沉思、兴奋”三个词写一段话最好多一点字
- 8急!求出y与x的函数解析式.
- 9糖水或盐水的凝固点与水的凝固点哪个大?
- 10一道智慧的题目,看似简单,却好难啊!帮个忙~不是数学!