当前位置: > 沿墙用长32m的竹篱笆围成一个矩形菜园(一面靠墙),怎么围才能使矩形菜园的面积最大?最大面积是多少?试...
题目
沿墙用长32m的竹篱笆围成一个矩形菜园(一面靠墙),怎么围才能使矩形菜园的面积最大?最大面积是多少?试
画出所得函数图象.

提问时间:2020-10-31

答案
设靠墙的一边为X,另一边为Y
则X+2Y=32
面积S=X*Y=X*(32-X)/2=-1/2X^2+16X
这个抛物线的图像总该会画吧,最大值是X=16时取得,这时Y=8
最大面积为16*8=128 仅供参考
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.