当前位置: > 已知:α-β=π/3,证明 cos^2α+cos^2β+sinαsinβ为定值,谢谢...
题目
已知:α-β=π/3,证明 cos^2α+cos^2β+sinαsinβ为定值,谢谢

提问时间:2020-10-31

答案
cos²α+cos²β+sinαsinβ
=[1+cos(2α)]/2+[1+cos(2β)]/2+sinαsinβ
=1+[cos(2α)+cos(2β)]/2+sinαsinβ
=1+2cos(α+β)cos(α-β)/2 +sinαsinβ /运用了和差化积公式
=1+cos(α+β)cos(π/3)+sinαsinβ
=1+(1/2)cos(α+β)+sinαsinβ
=1+(1/2)(cosαcosβ-sinαsinβ)+sinαsinβ
=1+(1/2)(cosαcosβ+sinαsinβ)
=1+(1/2)cos(α-β)
=1+(1/2)cos(π/3)
=1+(1/2)(1/2)
=1+1/4
=5/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.