当前位置: > 求抛物线y的平方=64x的点到直线4x+3y+46=0的距离的最小值,并求取得最小值时的抛物线上点的坐标...
题目
求抛物线y的平方=64x的点到直线4x+3y+46=0的距离的最小值,并求取得最小值时的抛物线上点的坐标

提问时间:2020-10-31

答案
抛物线y^2=64x上的点M(a^2,8a),到直线4x+3y+46=0的距离L:
L=|4a^2+3*8a+46|/√(4^2+3^2)=|4(a+3)^2+10|/5
a=-3,M(9,-24),L最小值=2
抛物线y^2=64x上的点(9,-24)到直线4x+3y+46=0的距离的最小值=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.