当前位置: > 证明:方程x-(1/2)sinx=0有唯一解...
题目
证明:方程x-(1/2)sinx=0有唯一解

提问时间:2020-10-31

答案
令 f(x)=x-(1/2)sinx,
则f'(x)=1-(1/2)cosx≥1-1/2=1/2>0
从而 f(x)在R上是单调增函数,
又f(0)=0-(1/2)sin0=0,
从而方程x-(1/2)sinx=0有唯一解为x=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.