当前位置: > 设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,若B⊆A,求实数a的取值范围....
题目
设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,若B⊆A,求实数a的取值范围.

提问时间:2020-10-31

答案
A═{x|x2+4x=0}={0,-4},
∵B⊆A.
①若B=∅时,△=4(a+1)2-4(a2-1)<0,得a<-1;
②若B={0},则
△=0
a2−1=0
,解得a=-1;
③B={-4}时,则
△=0
(−4)2−8(a+1)+a2−1=0
,此时方程组无解.
④B={0,-4},
−2(a+1)=−4
a2−1=0
,解得a=1.
综上所述实数a=1 或a≤-1.
先求集合A,利用B⊆A,建立不等关系,进行求解即可.

集合的包含关系判断及应用.

本题主要考查利用集合关系求参数的应用,注意分类讨论,利用一元二次方程根的个数和判别式之间的关系是解决本题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.