题目
如何用圆规和一把没刻度的尺子,画出一个正十七边形?
尺子一定要没刻度的
尺子一定要没刻度的
提问时间:2020-10-31
答案
1796年的一天,德国哥廷根大学,一个很有数学天赋的19岁青年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题.
前两道题在两个小时内就顺利完成了.第三道题写在另一张小纸条上:要求只用贺规和一把没有刻度的直尺,画出一个正17边形.
他感到非常吃力.时间一分一秒的过去了,第三道题竟毫无进展.这位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开这道题都没有任何帮助.
困难反而激起了他的斗志:我一定要把它做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求答案.
当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难题.
见到导师时,青年有些内疚和自责.他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽培……”
导师接过学生的作业一看,当即惊呆了.他用颤抖的声音对青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,回答道:“是我做的.但是,我花了整整一个通宵.”
导师请他坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再做出一个正17边形.
青年很快做出了一上正17边形.导师激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然一个晚上就解出来了.你是一个真正的天才!”
原来,导师也一直想解开这道难题.那天,他是因为失误,才将写有这道题目的纸条交给了学生.
每当这位青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来.”
这位青年就是数学王子高斯.
高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来.
关于正十七边形的画法(高斯的思路,本人并非有意剽窃^_^):
有一个定理在这里要用到的:
若长为|a|,|b|的线段可以用几何方法做出来,那么长为|c|的线段也能用几何方法做出的,
其中c是方程x^2+ax+b=0的实根.
上面的定理实际上就是在有线段长度|a|和|b|的时候,做出长为sqrt(a^2-4b)的线段.
(这一步,大家会画吧?)
而要在一个单位圆中做出正十七边形,主要就是做出长度是cos(2pai/17)的线段.
下面我把当年高斯证明可以做出cos(2pai/17)的证明给出,同时也就给出了具体的做法.
设a=2[cos(2pai/17)+cos(4pai/17)+cos(8pai/17)+cos(16pai/17)]>0
a1=2[cos(6pai/17)+cos(10pai/17)+cos(12pai/17)+cos(14pai/17)]0 b1=2[cos(4pai/17)+cos(16pai/17)]0 c1=2[cos(12pai/17)+cos(14pai/17)]
前两道题在两个小时内就顺利完成了.第三道题写在另一张小纸条上:要求只用贺规和一把没有刻度的直尺,画出一个正17边形.
他感到非常吃力.时间一分一秒的过去了,第三道题竟毫无进展.这位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开这道题都没有任何帮助.
困难反而激起了他的斗志:我一定要把它做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求答案.
当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难题.
见到导师时,青年有些内疚和自责.他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽培……”
导师接过学生的作业一看,当即惊呆了.他用颤抖的声音对青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,回答道:“是我做的.但是,我花了整整一个通宵.”
导师请他坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再做出一个正17边形.
青年很快做出了一上正17边形.导师激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然一个晚上就解出来了.你是一个真正的天才!”
原来,导师也一直想解开这道难题.那天,他是因为失误,才将写有这道题目的纸条交给了学生.
每当这位青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来.”
这位青年就是数学王子高斯.
高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来.
关于正十七边形的画法(高斯的思路,本人并非有意剽窃^_^):
有一个定理在这里要用到的:
若长为|a|,|b|的线段可以用几何方法做出来,那么长为|c|的线段也能用几何方法做出的,
其中c是方程x^2+ax+b=0的实根.
上面的定理实际上就是在有线段长度|a|和|b|的时候,做出长为sqrt(a^2-4b)的线段.
(这一步,大家会画吧?)
而要在一个单位圆中做出正十七边形,主要就是做出长度是cos(2pai/17)的线段.
下面我把当年高斯证明可以做出cos(2pai/17)的证明给出,同时也就给出了具体的做法.
设a=2[cos(2pai/17)+cos(4pai/17)+cos(8pai/17)+cos(16pai/17)]>0
a1=2[cos(6pai/17)+cos(10pai/17)+cos(12pai/17)+cos(14pai/17)]0 b1=2[cos(4pai/17)+cos(16pai/17)]0 c1=2[cos(12pai/17)+cos(14pai/17)]
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1Who else is at home是什么意思
- 2急求名人成功、奋斗故事 英语
- 3果园里有100棵桃树,有150棵梨树.梨树比桃树多百分之几?(算式)
- 4甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是_.
- 5E,F分别是四边形ABCD ,AD和BC的中点
- 6将y=二分之一x²+2x+1,y=2x²-3x+4 ,y=-2x²+4x-5, y=x²-5x+6
- 7请把英语翻成中文~
- 8一个口袋内有20个球,白的16个,黑的4个,从中任意取俩个,俩个都是白的概率是多少?一个白一个黑的概率又
- 9英语翻译
- 10设集合M={1,2,3,4},集合N={a,b,c},则从集合M到集合N的映射个数为多少?
热门考点
- 1∫(e^3x+1)/(e^x+1)dx=多少,
- 2组词 益:1.增加() 2.更加() 3.有益的(0 临:1.将来() 2.靠近() 3.来到.到达()
- 3关于莫泊桑的一句名言的问题:生活不可能像你想象的那么好,但也不会像你想象的那么糟.我觉得人的脆弱和坚强都超乎自己的想像,有时我脆弱得一句话就泪流满面,有时又发现自己咬着呀走了很长的路.我只在莫泊桑的小
- 4求思路和算式!
- 5高中生物鉴定脂肪一定要用显微镜吗
- 6在锐角三角形abc中,若c=2b,则c/b的范围是( )
- 7数字的小数点平方,只能用科学计算器算吗?普通计算器可以算吗?例如 400的2.67次方 怎么操作
- 8乙醇能不能***灭所有的真菌?
- 9解不等式x*x+1/2x(3-2x)
- 10某公司2002年的出口额为107万美元,比1992年出口额的4倍还多3万美元,设公司1992年的出口额为x万美元,则可以列出方程:_.