当前位置: > 求极限x->无穷 [(a1^(1/x)+a2^(1/x)+...+an^(1/x))/n]^(nx) 其中a1,a2...an>0...
题目
求极限x->无穷 [(a1^(1/x)+a2^(1/x)+...+an^(1/x))/n]^(nx) 其中a1,a2...an>0

提问时间:2020-10-31

答案
令:t=[a1^(1/x)+a2^(1/x)+...+an^(1/x)-n]/n
lim(x->∞) t = 0
lim(x->∞) t*nx
lim(n->∞) [a1^(1/x)+a2^(1/x)+...+an^(1/x)-n]/n * nx
=lim(n->∞) {a1^(1/x)-1}+{a2^(1/x)-1}+...+{an^(1/x)-1} * x
=lim{a1^(1/x)-1}*x+lim {a2^(1/x)-1}*x+...+lim {an^(1/x)-1} *x
【等价无穷小量代换:ak^(1/x)-1 lnak*(1/x)】
=lim lna1*(1/x)*x+lim lna2*(1/x)*x+...+lim lnan*(1/x)*x
= ln(a1a2...an)

lim(x->∞) [(a1^(1/x)+a2^(1/x)+...+an^(1/x))/n]^(nx)
=lim(x->∞) [1+ (a1^(1/x)+a2^(1/x)+...+an^(1/x)-n)/n]^(nx)
=lim(x->∞) {(1 +t)^(1/t)}^t*nx
= e^(ln(a1a2...an)
= a1a2...an
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.