当前位置: > 求dy/dx+2y/(x+1)=(x+1)^2的通解...
题目
求dy/dx+2y/(x+1)=(x+1)^2的通解

提问时间:2020-10-31

答案
设x+1=e^t,则dt/dx=1/(x+1)=e^(-t),dy/dx=e^(-t)dy/dt
代入原方程,得e^(-t)dy/dt+2ye^(-t)=e^(2t)
==>dy/dt+2y=e^(3t).(1)
∵齐次方程dy/dt+2y=0的通解是y=Ce^(-2t) (C是积分常数)
又方程(1)的一个特解是y=e^(3t)/5
∴方程(1)的通解是y=Ce^(-2t)+e^(3t)/5 (C是积分常数)
故原方程的通解是y=C/(x+1)²+(x+1)³/5 (C是积分常数).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.