当前位置: > 已知F1F2是椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,若在椭圆上存在一点P,使角...
题目
已知F1F2是椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,若在椭圆上存在一点P,使角
F1PF2=120°,则求椭圆离心率.

提问时间:2020-10-31

答案
若椭圆的上顶点【就是短轴端点】是B,左右焦点分别是F1、F2,则只要使得∠F2BO>=60°就可以了,此时三角形F2BO是一个90°、60°、30°的直角三角形,F2B=a,BO=b,则只要满足a>=2b就能保证∠F2BO>60°.即:a²>=4b²=4a²-4c²,得:4c²>=3a²,e²=c²/a²>=3/4,则e>=√3/2,从而有:√3/2=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.