题目
概率论中二维随机变量求边缘密度的两种方法的问题……
看这个题目:
二维随机变量的联合分布函数满足:
F(x,y)=1- e^(-x)-e^(-y) x,y>0
0 其他
求x的边缘概率密度.
我有两种方法:两种方法做的结果不一致……
1.x的边缘分布函数是F(x,+无穷)=1-e^(-x)
那么x的边缘概率密度是上式对于x求导即f(x)=e^(-x)
2.先求二维随机变量的联合分布密度:
f(x,y)等于F(x,y)的混合偏导,f(x,y)=0,最后竟然做的f(x)=0,
求高手指教,那个地方有问题,错在何处?
看这个题目:
二维随机变量的联合分布函数满足:
F(x,y)=1- e^(-x)-e^(-y) x,y>0
0 其他
求x的边缘概率密度.
我有两种方法:两种方法做的结果不一致……
1.x的边缘分布函数是F(x,+无穷)=1-e^(-x)
那么x的边缘概率密度是上式对于x求导即f(x)=e^(-x)
2.先求二维随机变量的联合分布密度:
f(x,y)等于F(x,y)的混合偏导,f(x,y)=0,最后竟然做的f(x)=0,
求高手指教,那个地方有问题,错在何处?
提问时间:2020-10-31
答案
你的分布函数不对,F(x,y)=1- e^(-x)-e^(-y) 在(0,0)点为-1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点