题目
如图,△ABC中,∠B=22.5°,∠C=60°,AB的垂直平分线交BC于点D,DE=6,BD=6
,AE⊥BC于E,求EC的长.
2 |
提问时间:2020-10-31
答案
连接AD,
已知DF垂直且平分AB⇒BD=AD,
∠B=22.5°,∠C=60°⇒∠BAC=97.5°,
根据三角形外角与外角性质可得,
∠ADE=∠B+∠DAB=45°,AE⊥BC,
故∠DAE=45°⇒△AED为等腰三角形,
根据等腰三角形的性质可得DE=AE=6,
∵∠C=60°,
∴∠CAE=90°-60°=30°,
∴AC=2CE,
在Rt△ACE中,AC2=AE2+CE2,
即4CE2=62+CE2,
∴CE2=12,
解得EC=2
.
已知DF垂直且平分AB⇒BD=AD,
∠B=22.5°,∠C=60°⇒∠BAC=97.5°,
根据三角形外角与外角性质可得,
∠ADE=∠B+∠DAB=45°,AE⊥BC,
故∠DAE=45°⇒△AED为等腰三角形,
根据等腰三角形的性质可得DE=AE=6,
∵∠C=60°,
∴∠CAE=90°-60°=30°,
∴AC=2CE,
在Rt△ACE中,AC2=AE2+CE2,
即4CE2=62+CE2,
∴CE2=12,
解得EC=2
3 |
首先作出辅助线连接AD,再利用线段垂直平分线的性质计算.
线段垂直平分线的性质.
本题关键是作出辅助线提示:连接AD.考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点