当前位置: > 矩阵A是元全为1的n阶矩阵(n>=2),证明A^k=n^k-1A(k是》2为正整数)...
题目
矩阵A是元全为1的n阶矩阵(n>=2),证明A^k=n^k-1A(k是》2为正整数)

提问时间:2020-10-31

答案
由矩阵的乘法定义可知 A^2=nA
所以 A^3 = A^2 A = nA A = nA^2 = n^2A.
由归纳法可得
A^k = AA^(k-1) = A(n^(k-2)A) = n^(k-2)A^2 = n^(k-1)A.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.