当前位置: > 如图,在△ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF,D为BF的中点,AE:AF的值为 _ ....
题目
如图,在△ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF,D为BF的中点,AE:AF的值为 ___ .
作业帮

提问时间:2020-10-31

答案
作业帮 过F作FH∥AB交CE于H,
∵FH∥AB,
∴∠HFD=∠EBD,
∵D为BF的中点,
∴BD=DF,
在△BED和△FHD中
∠EBD=∠HFD
∠EDB=∠FDH
BD=DF

∴△BED≌△FHD(AAS),
∴FH=BE,
∵FH∥AB,
∴△CFH∽△CAE,
∴HF:AE=CF:AC,
∵AC=AB,CF=AE,
∴AF=BE=HF.
设AC=AB=1,AE=x,则
HF
AE
=
CF
AC
即为
1-x
x
=
x
1

解得x=
5
2
-
1
2
,AF=
3
2
-
5
2

∴AE:AF=
5
+1
2
过F作FH∥AB交CE于H,首先证明△BED≌△FHD(SAS),得FH=BE;再证明△CFH∽△CAE,得到HF:AE=CF:AC,由已知可得CF=AE,AF=BE=HF,设AC=BA=1,AE=x,代入相似比中,即可解得x,即可得解AE:AF.

相似三角形的判定与性质.

本题主要考查三角形全等的判定和性质、三角形相似的判定和性质及二元一次方程的解法,正确作出辅助线是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.