当前位置: > 已知函数f(x)=x^2+mx+lnx是单调递增函数,则m的取值范围是( )...
题目
已知函数f(x)=x^2+mx+lnx是单调递增函数,则m的取值范围是( )
A.m>-2√2 B.m>=-2√2 C.m0 在(1,+∞)上恒成立
∴△=m^2-8=-2√2或m
我这个第一步是不是应该改为f‘(x)=2x+m+1/x=(2x^2+mx+1)/x>=0
因为有些函数,导数取0时,这个点不一定是极值点如f(x)=x^3
在R也上是单调递增的
但是反过来若f(x)>=0,则f(x)在其定义域内单调递增就不对了,是不是?
也就是说1:若f(x)在其定义域内单调递增,则f‘(x)>=0
2:若f’(x)>=0,则f(x)在其定义域内不一定递增
3:若f’(x)>0,则f(x)在其定义域内递增
综合三楼的答案这道题应该这么做:
∵f(x)为单调递增函数
∴f’(x)=2x+m+1/x>=0
∴m>=-(2x+1/x)在x>0时恒成立…… ①
∴若m>[-(2x+1/x)]max
即:2x+1/x取最小值时①成立
(2x+1/x)min=2√2
∴-(2x+1/x)>=-2√2
∴m>=-2√2

提问时间:2020-10-31

答案
这是一个恒成立问题,求导是必须的但后面的要改进f '(x)=2x+m+1/x>0==>m>-(2x+1/x) (x>0恒成立!)恒大就是左边 的m比右边的最大值还要大,下面去求右边的最大值,也就是求(2x+1/x) 的最小值;(2x+1/x)≥2√[2x*(1/x)]=2...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.