题目
微分方程式问题 dy/dx=tan(x+y)
提问时间:2020-10-31
答案
令x+y=u,则
dx+dy=du,代入换掉y,得
du/dx=tanu+1,分离变量,得
cosudu/(sinu+1)=dx,两边同时积分,得
ln(sinu+1)=x+lnc
所以
通解为
ln[sin(x+y)+1]=x+lnc化得
sin(x+y)+1=c*e^x
dx+dy=du,代入换掉y,得
du/dx=tanu+1,分离变量,得
cosudu/(sinu+1)=dx,两边同时积分,得
ln(sinu+1)=x+lnc
所以
通解为
ln[sin(x+y)+1]=x+lnc化得
sin(x+y)+1=c*e^x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点