当前位置: > △ABC的两个顶点A,B为椭圆x^2+5y^2=5的左右焦点,且三内角ABC满足sin(B-A)/2=1/2cosC/2 求顶点C的轨迹方程...
题目
△ABC的两个顶点A,B为椭圆x^2+5y^2=5的左右焦点,且三内角ABC满足sin(B-A)/2=1/2cosC/2 求顶点C的轨迹方程
.晕 是我算错了...还是真不存在.
那个是sin[(B-A)/2]
我算的两边之差等于第三边

提问时间:2020-10-31

答案
(1)易知,A(-2,0),B(2,0).===>c=2.(2)sin[(B-A)/2]=1/2cosC/2===>2sin(B-A)=sinA+sinB.===>b-a=c/2.===>CA-CB=1.故点C的轨迹方程是60x^2-4y^2=15.(x>0).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.