当前位置: > 确定常数a,b使 lim (√(2x^2+4x-1) - ax - b) = 0:到√2x√(1+2/x-1/(2x^2))以后一步我就不懂了,...
题目
确定常数a,b使 lim (√(2x^2+4x-1) - ax - b) = 0:到√2x√(1+2/x-1/(2x^2))以后一步我就不懂了,

提问时间:2020-10-31

答案
(√(2x^2+4x-1) - ax - b) a>0 否则 x -> 无限大 不会0
= (√(2x^2+4x-1) - (ax + b)) (√(2x^2+4x-1) + (ax + b) /(√(2x^2+4x-1) + (ax + b)) 主要是分子分母各乘一个共轭因子conjugate factor 以消去根号 (a^2-b^2)= (a+b)(a-b)
= [ (2x^2+4x-1)- (ax + b)^2](√(2x^2+4x-1) + (ax + b))
= (2x^2+4x-1-a^2x^2 -2abx +b^2)/(√(2x^2+4x-1) + (ax + b))
因份母>0 而且是1阶的而份子是2阶的要不变无限大则份子的2阶和1阶项必须是0. 则
2x^2- a^2x^2=0 => a=根2 和 4x-2abx= 0 => b= 4/(2a)= 根2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.