题目
已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B,C(点B在点C的左侧).
(1)直接写出抛物线对称轴方程;
(2)若抛物线经过原点,且△ABC为直角三角形,求a,b的值;
(3)若D为抛物线对称轴上一点,则以A,B,C,D为顶点的四边形能否为正方形?若能,请写出a,b满足的关系式;若不能,说明理由.
(1)直接写出抛物线对称轴方程;
(2)若抛物线经过原点,且△ABC为直角三角形,求a,b的值;
(3)若D为抛物线对称轴上一点,则以A,B,C,D为顶点的四边形能否为正方形?若能,请写出a,b满足的关系式;若不能,说明理由.
提问时间:2020-10-31
答案
(1)抛物线对称轴方程:直线x=2.(2分)(2)设直线x=2与x轴交于点E,则E(2,0).∵抛物线经过原点,∴B(0,0),C(4,0).(3分)∵△ABC为直角三角形,根据抛物线的对称性可知AB=AC,∴AE=BE=EC,∴A(2,-...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1下列符合东半球、北半球、低纬度三个条件的是( ) A.28°N,10°E B.20°S,21°W C.10°N,170°E D.32°N,150°E
- 2是"lies in this area"还是"lies on this area"
- 3改病句要有什么关联词?
- 4特征向量相互正交的矩阵一定是对称矩阵吗?一定是实对称矩阵吗?
- 5如图,三角形ABC中,角BAC=90°,BD是角ABC的平分线,BD的延长线垂直于过C点的直线于E直线CE交BA的延长线于F,求证:BD=2CE
- 6苹果有五箱每箱15千克,梨有七箱每箱x千克共200千克.求x是多少
- 720句弟子规全文带拼音
- 8等边三角形三内角都是60°怎样证明啊?
- 9已知a与b互为相反数,c、d互为倒数,x的绝对值是-2的相反数的倒数,y不能做除数,求2(a+b)的2012次方-2(
- 10用寒风呼啸造句,