当前位置: > 在三角形ABC中 a/c=√3 -1,tanB/tanC=2a-c/c,求A B C...
题目
在三角形ABC中 a/c=√3 -1,tanB/tanC=2a-c/c,求A B C

提问时间:2020-10-30

答案
由正弦定理得,tanB/tanC=(2a-c)/c=(2sinA-sibC)/sinC,在化切为弦,即sinB*cosC=2sinA*cosB-sinC*cosB,所以,移项利用正弦的和角公式得sin(B+C)=2sinA*cosB=sinA所以cosB=1/2,所以B=60.而sinA/sinC=根号3-1,所以sin(120-C)/sinC=根号3-1,所以cotC=2-根号3.所以C=75度,A=45度.B=60度.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.