当前位置: > 在三角形ABC中.三内角A,B,C,所对的边分别为a,b,c,若满足a=(√3-1)才,tanB/tanc=2a-c/c,求A,B,C的值...
题目
在三角形ABC中.三内角A,B,C,所对的边分别为a,b,c,若满足a=(√3-1)才,tanB/tanc=2a-c/c,求A,B,C的值

提问时间:2020-10-30

答案
由正弦定理
a/c=sinA/sinC=√3-1
(2a-c)/c=2a/c-c/c=2sinA/sinC-1
所以tanB/tanC=(sinB/cosB)/(sinC/cosC)=sinBcosC/sinCcosB=2sinA/sinC-1
(sinBcosC+sinCcosB)/sinCcosB=2sinA/sinC
sin(B+C)/sinCcosB=2sinA/sinC
sin(180-A)/sinCcosB=2sinA/sinC
sinA/sinCcosB=2sinA/sinC
0同理,sinC不等于0
约分
1/cosB=2
cosB=1/2
B=60度
代入tanB/tanC=2sinA/sinC-1
且sinA/sinC=√3-1
√3/tanC=2√3-2-1
tanC=2+√3
C=75度
A=180-B-C
所以
A=45,B=60,C=75
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.