当前位置: > 如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(半径比r小很多)...
题目
如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(半径比r小很多)
现给小球以水平向右的初速度v0,则要使小球不脱离圆轨道运动, v0应当满足 (g=10m/s)
疑惑:为什么有两种情况,即1、越过最高点.2、不越过四分之一圆周.,怎么分析得到的

        答案解析中说:  当v0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置处,速度恰好减为零。 

       为什么临界状态是这个

提问时间:2020-10-30

答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.