当前位置: > 已知锐角三角形ABC中,sin(A+B)=3/5,sin(A-B)=1/5.(1证明tanA=2tanB (2)tanB的值 重点是!...
题目
已知锐角三角形ABC中,sin(A+B)=3/5,sin(A-B)=1/5.(1证明tanA=2tanB (2)tanB的值 重点是!
重点是第二问!

提问时间:2020-10-30

答案
证明:

sin(A+B)=sinAcosB+sinBcosA=3/5
sin(A-B)=sinAcosB-sinBcosA=1/5
两式相加,得:
2sinAcosB=4/5
sinAcosB=2/5 ①
则sinBcosA=1/5 ②
①/②,得:
tanA/tanB=2
即tanA=2tanB

∵△ABC是锐角三角形
∴0<C<π/2
又A+B=π-C
∴π/2<A+B<π
∵sin(A+B)=3/5
∴cos(A+B)=-√[1-sin²(A+B)]=-4/5
则tan(A+B)=sin(A+B)/cos(A+B)=-3/4
即(tanA+tanB)/(1-tanAtanB)=-3/4
又tanA=2tanB
∴3tanB/(1-2tan²B)=-3/4
即2tan²B-4tanB-1=0
解得tanB=(4±2√6)/4
∵0<B<π/2
∴tanB=(4+2√6)/4=1+(√6)/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.