题目
已知向量a=(cosωx,根号三cosωx),b=(sinωx,cosωx)(其中0<ω≤1),记f(x)=向量a*向量b-2分之根号三
且满足f(x+π)=f(x)
1.求y=f(x)的解析式
2.当x∈[-十二分之π,十二分之5π],求函数y=f(x)的值域
3.如果关于x的方程3[f(x)]的平方+mf(x)-1=0在区间[-十二分之π,十二分之5π]上有三个不相等的实数根,求实数m的取值范围.
且满足f(x+π)=f(x)
1.求y=f(x)的解析式
2.当x∈[-十二分之π,十二分之5π],求函数y=f(x)的值域
3.如果关于x的方程3[f(x)]的平方+mf(x)-1=0在区间[-十二分之π,十二分之5π]上有三个不相等的实数根,求实数m的取值范围.
提问时间:2020-10-30
答案
1
向量a=(cosωx,根号三cosωx),b=(sinωx,cosωx)
∴f(x)=a●b-√3/2
=sinwxcoswx+√3cos²wx-√3/2
=1/2sin2wx+√3/2(1+cos2wx)-√3/2
=1/2sin2wx+√3/2cos2wx
=sin(2wx+π/3)
∵f(x+π)=f(x)
∴f(x)的周期为π
∴2π/(2w)=π ∴w=1
∴f(x)=sin(2x+π/3)
2
∵x∈[-π/12,5π/12]
∴2x∈[-π/6,5π/6]
∴2x+π/3∈[π/6,7π/6]
∴当2x+π/3=7π/6时,f(x)min=-1/2
当2x+π/3=π/2时,f(x)max=1
∴f(x)的值域为[-1/2,1]
3
3[f(x)]²+mf(x)-1=0
在[-π/12,5π/12]上有三个不相等的实数根
令t=f(x)=sin(2x+π/3)
2x+π/3∈[π/6,π/2)U(π/2,5π/6]时,
x与t的关系为2对1
2x+π/3∈(5π/6,7π/6]U{π/2}时.
x与t的关系为1对1
则3t²+mt-1=0的实数根t1,t2满足:
t1∈[-1/2,1/2)U{1} ,t2∈[1/2,1)
当t1=1时,t2=-1/3不合题意
t1∈[-1/2,1/2),t2∈[1/2,1)
考察函数g(t)=3t²+mt-1
则 {g(-1/2)=3/8-m/2-1≥0 ==>m≤-5/4
{g(1/2)=3/8+m/2-1≤0 ==> m≤5/4
{g(1)=2+t>0 ==>m>-2
取交集得 -2
向量a=(cosωx,根号三cosωx),b=(sinωx,cosωx)
∴f(x)=a●b-√3/2
=sinwxcoswx+√3cos²wx-√3/2
=1/2sin2wx+√3/2(1+cos2wx)-√3/2
=1/2sin2wx+√3/2cos2wx
=sin(2wx+π/3)
∵f(x+π)=f(x)
∴f(x)的周期为π
∴2π/(2w)=π ∴w=1
∴f(x)=sin(2x+π/3)
2
∵x∈[-π/12,5π/12]
∴2x∈[-π/6,5π/6]
∴2x+π/3∈[π/6,7π/6]
∴当2x+π/3=7π/6时,f(x)min=-1/2
当2x+π/3=π/2时,f(x)max=1
∴f(x)的值域为[-1/2,1]
3
3[f(x)]²+mf(x)-1=0
在[-π/12,5π/12]上有三个不相等的实数根
令t=f(x)=sin(2x+π/3)
2x+π/3∈[π/6,π/2)U(π/2,5π/6]时,
x与t的关系为2对1
2x+π/3∈(5π/6,7π/6]U{π/2}时.
x与t的关系为1对1
则3t²+mt-1=0的实数根t1,t2满足:
t1∈[-1/2,1/2)U{1} ,t2∈[1/2,1)
当t1=1时,t2=-1/3不合题意
t1∈[-1/2,1/2),t2∈[1/2,1)
考察函数g(t)=3t²+mt-1
则 {g(-1/2)=3/8-m/2-1≥0 ==>m≤-5/4
{g(1/2)=3/8+m/2-1≤0 ==> m≤5/4
{g(1)=2+t>0 ==>m>-2
取交集得 -2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1某物受到一对平衡力的作用,做匀速直线运动,若撤掉其中一个力,该物体的动能为什么(不一定)发生改变
- 2关于slow food英语作文
- 3如何做好一名共青团员?
- 4数学里面的四舍五入怎么理解?
- 5My friend is from England 同意句
- 6木块在平面上滑动时,摩擦力作用点在底部,为什么画力的图示时,摩擦力画在重心的位置呢?
- 7csc和sec为什么被sin和cos替代了
- 8若函数y=ax与y=-b/x在(0,+∞)上都是减函数,则函数y=ax2+bx在(0,+∞)上是单调递_函数.(填“增函数”或“减函数”)
- 9你知道哪些文学作品是描写战争的?举两个例子.任选一部描写战争的作品,谈谈你对作品中的任务认识(100字左右).
- 1010克溶质质量分数为40%的硝酸钾溶液与40克溶质质量分数为10%的硝酸钾溶液混合后,溶液中溶质的质量分数是
热门考点