当前位置: > 利用连续函数的性质求极限....
题目
利用连续函数的性质求极限.
①lim(x→0)(1+x)tanx/tan(1+x^2),
②lim(x→π/2)(1+cos3x)^secx,

提问时间:2020-10-30

答案
连续函数的极限值等于该点处的函数值.
1.原式= 0 / tan1 = 0
2.原式= lim(x->π/2) ( 1+ cos3x) ^ secx (1+o)^ ∞
= e^ lim(x->π/2) secx ln( 1+ cos3x)
= e^ lim(x->π/2) ln( 1+ cos3x) / cosx
= e^ lim(x->π/2) cos3x / cosx 等价无穷小代换:ln(1+cos3x) cos3x
= e^ lim(x->π/2) ﹣3 sin3x / (﹣sinx) 洛必达法则
= e^(﹣3)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.