题目
已知抛物线y^2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且AF+BF=8,且AB的垂直平分线恒过定点S(6,0)
(1)求抛物线方程
(2)求三角形ABS面
重点是面积?
(1)求抛物线方程
(2)求三角形ABS面
重点是面积?
提问时间:2020-10-30
答案
答:
① 焦点在x轴上,可设抛物线方程为:y² = 2px.可以判断焦点在(p/2,0)点.
② 设A点坐标(x1,y1),B点坐标(x2,y2),设AB斜率是k,线段AB的垂直平分线斜率是k'
则:kk' = -1,所以:
(y1-y2)/(x1-x2) * [(y1+y2)/2 - 0 ]/[(x1+x2)/2 - 6] = -1
(y1² - y2²) / [x1² - x2² -12(x1 - x2)] = -1
代入y1²=2px1,y2²=2px2,化简:
2p/(x1 + x2 - 12) = -1
x1 + x2 = 12 - 2p ---
③
AF²=(x1 - p/2)² + y1² = (x1 - p/2)² + 2px1 = (x1 + p/2)²
AF = x1 + p/2
同理:
BF = x2 + p/2
AF + BF = x1 + x2 + p ---
link:
12 - 2p + p = 8
p=4
综上:
抛物线方程:
y² = 8x
① 焦点在x轴上,可设抛物线方程为:y² = 2px.可以判断焦点在(p/2,0)点.
② 设A点坐标(x1,y1),B点坐标(x2,y2),设AB斜率是k,线段AB的垂直平分线斜率是k'
则:kk' = -1,所以:
(y1-y2)/(x1-x2) * [(y1+y2)/2 - 0 ]/[(x1+x2)/2 - 6] = -1
(y1² - y2²) / [x1² - x2² -12(x1 - x2)] = -1
代入y1²=2px1,y2²=2px2,化简:
2p/(x1 + x2 - 12) = -1
x1 + x2 = 12 - 2p ---
③
AF²=(x1 - p/2)² + y1² = (x1 - p/2)² + 2px1 = (x1 + p/2)²
AF = x1 + p/2
同理:
BF = x2 + p/2
AF + BF = x1 + x2 + p ---
link:
12 - 2p + p = 8
p=4
综上:
抛物线方程:
y² = 8x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1Sn=1+(1+a)+(1+a+a2)+(1+a+a2+a3)+…+(1+a+a2+…+an)则Sn= a2为a的平方 an为a的N次方
- 2小华读一本故事书,第一天读了40页,比第二天读的多25%.第二天读的页数占全书的1/3.这本书共有多少页?
- 3英语翻译
- 4班加罗尔在哪?
- 5请问含铁元素多是食物有哪些?
- 6英语翻译
- 7在如图所示的闪光灯电路中,电源的电动势为E,电容器的电容为C.当闪光灯两端电压达到击穿电压U时,闪光灯才有电流通过并发光,正常工作时,闪光灯周期性短暂闪光,则可以判定(
- 8写出表示用手拿着的意思的词语,至少四个!
- 9已知3m=4n,则m/m+n+n/m−n−m2m2−n2=_.
- 10找出下面数列的规律,在空格中应该填__.1 2 5 12 27 58 __ 248 ……
热门考点