当前位置: > 点p是曲线y=x2+3上任意一点,求p到直线y=x+2的距离最小值...
题目
点p是曲线y=x2+3上任意一点,求p到直线y=x+2的距离最小值
点p是曲线y=x^2+3上任意一点,求点p到直线y=x+2距离的最小值,

提问时间:2020-10-30

答案
设点是(a,a²+3)
直线x-y+2=0
距离d=|a-a²-3+2|/√(1²+1²)
=|a²-a+1|/√2
a²-a+1
=(a-1/2)²+3/4≥3/4
所以d≥(3/4)/√2=3√2/8
所以最小距离=3√2/8
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.