题目
已知函数f(x)=x/lnx - ax(a∈R)(1)若实数a=0,求函数f(x)在区间(1.正无穷)上的最小值(2)若函数f(X)在其定
已知函数f(x)=x/lnx - ax(a∈R)
(1)若实数a=0,求函数f(x)在区间(1.正无穷)上的最小值
(2)若函数f(X)在其定义域上位减函数,求a的范围,
(3)若特定x1,x2∈[e,e^2],使f(x1)≤f(x2)+a成立,求a的范围
已知函数f(x)=x/lnx - ax(a∈R)
(1)若实数a=0,求函数f(x)在区间(1.正无穷)上的最小值
(2)若函数f(X)在其定义域上位减函数,求a的范围,
(3)若特定x1,x2∈[e,e^2],使f(x1)≤f(x2)+a成立,求a的范围
提问时间:2020-10-30
答案
(1) a=0时,f(x)=x/lnx ,令f'(x)=(lnx-1)/(lnx)²=0,得 x=e
x∈(1,e)时,f'(x)<0,f(x)单调减;x∈(e,+∞)时,f'(x)>0,f(x)单调增,
所以,函数f(x)在区间(1,+∞)上的最小值为 f(e)=e
(2)由题意,当x>0时,f'(x)=(lnx-1)/(lnx)²-a=(-aln²x+lnx-1)/ln²x≤0恒成立,
即-aln²x+lnx-1≤0恒成立,
即 a≥(lnx-1)/ln²x=-(1/lnx-1/2)²+1/4恒成立,
所以,a≥1/4
(3)"特定x1,x2∈[e,
x∈(1,e)时,f'(x)<0,f(x)单调减;x∈(e,+∞)时,f'(x)>0,f(x)单调增,
所以,函数f(x)在区间(1,+∞)上的最小值为 f(e)=e
(2)由题意,当x>0时,f'(x)=(lnx-1)/(lnx)²-a=(-aln²x+lnx-1)/ln²x≤0恒成立,
即-aln²x+lnx-1≤0恒成立,
即 a≥(lnx-1)/ln²x=-(1/lnx-1/2)²+1/4恒成立,
所以,a≥1/4
(3)"特定x1,x2∈[e,
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1用简便方法计算:(1)、1/4的四千零五次方乘16的两千零三次方 (2)8(5χ+3/2)(5/2χ-3/4)
- 2英语作文 我们为什么需要植物
- 31.在装满水的水管的一头敲击一下,在水管的另一头能听到几次响声?这里是哪些介质传声的?
- 4等比数列an中a1=4,前n项和Sn满足S3 S2 S4成等差数列,求an通项公式!
- 5新能源的开发和利用将给我们带来哪些好处?
- 62010年1月发生的海地地震时地壳岩石在( )作用下,发生( )而引起的震动现象
- 7听天气预报别只注意温度阅读题答案
- 82根号a+3根号b的有理化因式
- 9什么化学反应生成盐
- 10严冬窗玻璃的内侧结冰是_现象;卫生球放久了会变小,甚至消失,是_现象.钢水浇铸成钢球是_现象,冬天早晨草地上的霜是_现象.
热门考点