题目
如图,在三角形ABC中,角ACB=90°,D是BC上一点,作DE垂直AB,交AC于点F,CD^2=DE乘DF,那么点D是AB的中点
提问时间:2020-10-30
答案
原题的结论应该是“点D是BC的中点”,兹证明如下.
考查△DCF和△DEB,由∠ACB=90°,DE⊥AB,知两三角形都是直角三角形,且∠CDF
=∠EDB,于是△DCF∽△DEB,得CD/DE=DF/DB,或CD·DB=DE·DF,而由已知CD²=DE·DF
那么CD·DB=CD²,从而CD=DB,故点D是BC的中点.
考查△DCF和△DEB,由∠ACB=90°,DE⊥AB,知两三角形都是直角三角形,且∠CDF
=∠EDB,于是△DCF∽△DEB,得CD/DE=DF/DB,或CD·DB=DE·DF,而由已知CD²=DE·DF
那么CD·DB=CD²,从而CD=DB,故点D是BC的中点.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1一个论坛的回帖 怎么翻译 这句话呢 Pretty cool.And I agree,this would make a great sticky
- 2已知log(a)(2)=m,log(a)(3)=n.则a^(2m+n)的值为多少?
- 3y=f(x)恒过(0,1),且其反函数为g(x).问y=g(x)+1恒过定点什么?
- 4求代数式值的方法有哪些
- 52012年伦敦夏季奥运会在几月几日举行?
- 6作文 《 骗 》咋写?我要范文,
- 7解方程e^(2x+1)-2e^(x+2)-3=0
- 8当一年级班主任第一天要注意什么
- 9已知a,b,c为△ABC的三边,且满足a²+b²+c²+50=10a+6b+8c,判断△ABC的形状 有加
- 10帮忙用英文写份招聘启示,简单点的,在线等