当前位置: > 方程|x^2+2x-3|=a(x-2)有四个实数根,求实数a的取值范围...
题目
方程|x^2+2x-3|=a(x-2)有四个实数根,求实数a的取值范围

提问时间:2020-10-30

答案
我们通过化简作图得到|x^2+2x-3|的图像如下:

不难求出顶点D为(-1,4),A(-3,0),B(1,0),C(3,0).
要使方程有四个根,则要有一条直线与抛物线有四个交点
将绝对值去掉后,只要与直线f(x)=-a(x-2)有两个交点就可以了,即x^2+2x-3=-a(x-2)
△=(2+a)^2-4(-2a-3)>0
当然,绝对值去掉后也有可能等式为x^2+2x-3=a(x-2),同理△>0求得
得到两个不等式,即为a的取值范围:a<2-√3,或a>6+2√5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.