当前位置: > 过抛物线y²=4x的焦点F的直线交抛物线于A、B两点,求|AF|·|FB|的取值范围-...
题目
过抛物线y²=4x的焦点F的直线交抛物线于A、B两点,求|AF|·|FB|的取值范围-
(要求步骤具体,本人高二学生,别用高数,公式之类的,看不懂)

提问时间:2020-10-30

答案
[[[注:用"参数法" ]]]

由题设,两点A,B均在抛物线y²=4x上,
故可设A(a², 2a), B(b², 2b), (a,b∈R, a≠b)
显然,焦点F(1,0)
[[[1]]]
易知,三点A, F, B共线,
两条直线AF, BF斜率相等.
∴(2a)/(a²-1)=(2b)/(b²-1)
a(b²-1)=b(a²-1)
ab(b-a)+(b-a)=0.
∴ab=-1.
[[[2]]]
由抛物线定义可知
|AF|=a²+1. |BF|=b²+1
由基本不等式可得:
|AF|=a²+1≥2|a|
|BF|=b²+1≥2|b|
两式相乘,结合ab=-1可得:
|AF|×|BF|≥4
等号仅当|a|=|b|=1,且a+b=0时取得
∴取值范围为[4, +∞)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.