当前位置: > 已知函数f(x)的定义域为R,对任意实数m、n,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1 (1)求证:f(x)在定义域R上是单调递增函数; (2)若f(3)=4,解不等...
题目
已知函数f(x)的定义域为R,对任意实数m、n,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1
(1)求证:f(x)在定义域R上是单调递增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2.

提问时间:2020-10-30

答案
(1)证明:设x1,x2∈R,且x1<x2,则x2-x1>0,
∴f(x2-x1)>1,
又f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1
=f(x2-x1)+f(x1)-1-f(x1)>0,即f(x2)>f(x1),
∴f(x)是R上的增函数.
(2)∵m,n∈R,不妨设m=n=1,
∴f(1+1)=f(1)+f(1)-1,即f(2)=2f(1)-1,
f(3)=f(2+1)=f(2)+f(1)-1=2f(1)-1+f(1)-1=3f(1)-2=4,
∴f(1)=2,
∴f(a2+a-5)<2=f(1),
∵f(x)在R上为增函数,∴a2+a-5<1,解得-3<a<2,
∴a∈(-3,2).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.