题目
某单位要印刷一批北京奥运会宣传资料
某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲乙俩印刷厂分别提出了优惠条件,甲印刷厂提出:凡是印刷数量超过2000份的,超过部分印刷费可按9折收费.乙印刷厂提出:凡是印刷数量超过3000份的,超过部分的印刷费可按8折收费
(1)如果该单位要印刷2400份,那么甲印刷厂的费用是——,乙印刷厂费的用是——.
(2)设甲印刷厂收取的费用为y甲元,乙印刷厂收取的费用为y乙元,请直接写出y甲·y乙与单位需要印刷资料份数x之间的函数关系式.
(3)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?
某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲乙俩印刷厂分别提出了优惠条件,甲印刷厂提出:凡是印刷数量超过2000份的,超过部分印刷费可按9折收费.乙印刷厂提出:凡是印刷数量超过3000份的,超过部分的印刷费可按8折收费
(1)如果该单位要印刷2400份,那么甲印刷厂的费用是——,乙印刷厂费的用是——.
(2)设甲印刷厂收取的费用为y甲元,乙印刷厂收取的费用为y乙元,请直接写出y甲·y乙与单位需要印刷资料份数x之间的函数关系式.
(3)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?
提问时间:2020-10-30
答案
(1)直接计算即可;
(2)先根据x的取值范围分三种情况讨论:(i)0<x≤2000,(ii)2000<x≤3000,(iii)当x>3000时,可根据题意列出y甲=0.27x+660;y乙=0.24x+780,根据y甲=y乙,y甲>y乙,y甲<y乙,分别求关于x的不等式,综合可知:当0<x≤2000或x=4000时,无论到哪家印刷,都一样优惠;当2000<x<4000时,到甲印刷厂可获得更大优惠;当x>4000,到乙印刷厂可获得更大优惠.
(1)甲印刷厂的费用是600+2000×0.3+0.9×0.3(2400-2000)=1308元,乙印刷厂的费用是600+0.3×2400=1320元.
(2)设该单位需印刷x份资料,共需费用为y元.
(i)当0<x≤2000时,无论到哪家印刷厂印刷资料,都一样优惠.
(ii)当2000<x≤3000时,甲印刷厂有打折,而乙印刷厂没打折,显然到甲印刷厂可获得更大优惠.
(iii)当x>3000时,可分别得到费用的两个函数
y甲=600+2000×0.3+0.9×0.3(x-2000)=0.27x+660
y乙=600+3000×0.3+0.8×0.3(x-3000)=0.24x+780
令y甲=y乙,即0.27x+660=0.24x+780
解得x=4000,所以当印刷4000份资料时,无论到哪家印刷,都一样优惠.
令y甲>y乙,即0.27x+660>0.24x+780
解得x>4000,所以当印刷大于4000份资料时,到乙印刷厂可获得更大优惠.
令y甲<y乙,即0.27x+660<0.24x+780
解得x<4000,所以当印刷大于3000且小于4000份资料时,到甲印刷厂可获得更大优惠.
综上所述,当0<x≤2000或x=4000时,无论到哪家印刷,都一样优惠.
当2000<x<4000时,到甲印刷厂可获得更大优惠.
当x>4000,到乙印刷厂可获得更大优惠.
点评:主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.
(2)先根据x的取值范围分三种情况讨论:(i)0<x≤2000,(ii)2000<x≤3000,(iii)当x>3000时,可根据题意列出y甲=0.27x+660;y乙=0.24x+780,根据y甲=y乙,y甲>y乙,y甲<y乙,分别求关于x的不等式,综合可知:当0<x≤2000或x=4000时,无论到哪家印刷,都一样优惠;当2000<x<4000时,到甲印刷厂可获得更大优惠;当x>4000,到乙印刷厂可获得更大优惠.
(1)甲印刷厂的费用是600+2000×0.3+0.9×0.3(2400-2000)=1308元,乙印刷厂的费用是600+0.3×2400=1320元.
(2)设该单位需印刷x份资料,共需费用为y元.
(i)当0<x≤2000时,无论到哪家印刷厂印刷资料,都一样优惠.
(ii)当2000<x≤3000时,甲印刷厂有打折,而乙印刷厂没打折,显然到甲印刷厂可获得更大优惠.
(iii)当x>3000时,可分别得到费用的两个函数
y甲=600+2000×0.3+0.9×0.3(x-2000)=0.27x+660
y乙=600+3000×0.3+0.8×0.3(x-3000)=0.24x+780
令y甲=y乙,即0.27x+660=0.24x+780
解得x=4000,所以当印刷4000份资料时,无论到哪家印刷,都一样优惠.
令y甲>y乙,即0.27x+660>0.24x+780
解得x>4000,所以当印刷大于4000份资料时,到乙印刷厂可获得更大优惠.
令y甲<y乙,即0.27x+660<0.24x+780
解得x<4000,所以当印刷大于3000且小于4000份资料时,到甲印刷厂可获得更大优惠.
综上所述,当0<x≤2000或x=4000时,无论到哪家印刷,都一样优惠.
当2000<x<4000时,到甲印刷厂可获得更大优惠.
当x>4000,到乙印刷厂可获得更大优惠.
点评:主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1英语 i wish you ( ) your time like this.
- 2形容工作环境舒适的词
- 3懂图论的可以进!TSP问题与最短路问题杂合的 属于什么类型?
- 4在整数100到500之间能被11整除的整数个数是( )A.34 B.35 C.36 D.37
- 526400除以【360减(960除以160加154)】简便计算
- 6十字相乘:3x的平方-8x+4 6a的平方-4a-10
- 7《出塞》这首诗从什么的角度写战争,在写法上极具特色,将什么与什么、什么与
- 8关于酸碱中和滴定
- 9What is said cannot be unsaid.
- 10beef noodles with/of/and tomatoes 这三个我分不清啊,怒
热门考点
- 1小强把棱长为2里米的正方体橡皮泥捏了一个高1.6厘米的长方体,求长方体的底面积?
- 2after.______(have)breakfast ,Marin went to work
- 3一个长方体的棱长总和是36分米,这个长方体长、宽、高的和是()分米?
- 4用反证法证明a,b为实数,求证a方+b方大于等于0
- 5模仿《火烧云》的写法,用平时积累的描写大自然的现象的语言写一段话!
- 6把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=1/2PB,
- 7e的2x次方是否等于e的x次方的平方
- 8甲数的5分之2是乙数的4分之3,已知乙数是40,甲数是()
- 9某同学想用天平测一杯酒精的质量,他设计出了如下的实验步骤:
- 10将干燥的H2和CO两种气体分别燃烧,在火焰上方各罩一个冷而干燥的烧杯,烧杯内壁出现————的原气体是H2.