当前位置: > 讨论函数f(x)=(ax+1)∕(x+2) (a≠0.5)在区间(-2,+∞)上的单调性....
题目
讨论函数f(x)=(ax+1)∕(x+2) (a≠0.5)在区间(-2,+∞)上的单调性.

提问时间:2020-10-30

答案
令,x2>x1,则有X2-X1>0,X1*X2>0,
f(x2)-f(x1)=(ax2+1)/(x2+2)-(ax1+1)/(x1+2)
=[2a(x2-x1)+(x1-x2)]/[x1*x2+2(x1+x2)+4]
=[(x2-x1)(2a-1)]/[x1*x2+2(x1+x2)+4].
因为:X2-X1>0,X1*X2>0,(X>-2)则有
[X1*X2+2(X1+X2)+4]>0,(a≠1/2)
讨论:
1)当(2a-1)>0时,a>1/2,有,f(x2)-f(x1)>0,
f(x2)>f(x1),x2>x1,
则,f(x)在X>-2上是单调递增函数.
2)当(2a-1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.