当前位置: > 已知递推公式f(n)=(n-1)(n-2)[f(n-2)+f(n-3)+(n-3)*f(n-4)] (n>4)求通项公式...
题目
已知递推公式f(n)=(n-1)(n-2)[f(n-2)+f(n-3)+(n-3)*f(n-4)] (n>4)求通项公式
f(n)=(n-1)(n-2)[f(n-2)+f(n-3)+(n-3)*f(n-4)] (n>4)
f(1)=f(2)=2 f(3)=2 f(4)=6
f(1)=f(2)=0
上面打错了
这个f(n) 跟 /e 在n趋近于无穷的时候是有倍数关系的
给出几个f(n)方便大家检验结果
f(5)=24
f(6)=160
f(7)=1140
f(8)=8988
上面那个递推跟下面这个是等价的
f[n]=(n-1)(f[n-1]+(n-2)*f[n-3])

提问时间:2020-10-30

答案
令g(n)=f(n)/(n-1)!,h(n)=g(n)/n=f(n)/n!
那么g(n)=g(n-2)+h(n-3)+h(n-4)
对n求和可得
g(n)=1+h(1)+h(2)+...+h(n-3)
因此
g(n+1)-g(n)=h(n-2)
或者
(n+1)h(n+1)-nh(n)=h(n-2)
再考察幂级数
y(x)=sum h(n)x^n,
其中求和从n=1开始,当然也可以补一个h(0)=0
由上述递推关系可得
(1-x)y'(x)=x^2(y+1)
解出y(x)=exp(-x(x+2)/2)/(1-x)-1
所以f(n)就是y(x)在x=0处的n阶导数
至于有没有更初等的通项,那我也不清楚
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.