当前位置: > 设实数m,n满足4m^2+n^2=8,求√(m^2+n^2-4n+4)+√(m^2+n^2-4m-4n+8)的最小值....
题目
设实数m,n满足4m^2+n^2=8,求√(m^2+n^2-4n+4)+√(m^2+n^2-4m-4n+8)的最小值.

提问时间:2020-10-30

答案
根号(m^2+n^2-4n+4)+根号(m^2+n^2-4m-4n+8)
=根号[m^2+(n-2)^2]+根号[(m-2)^2+(n-2)^2]
由以上形式,可将题目可看成是求点(m,n)到(0,2)和(2,2)两点距离之和的最小值
由坐标图上可看出,当n=2且0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.