题目
如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.
(1)求证:△PDQ是等腰直角三角形;
(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.
(1)求证:△PDQ是等腰直角三角形;
(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.
提问时间:2020-10-30
答案
(1)证明:连接AD
∵△ABC是等腰直角三角形,D是BC的中点
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,
在△BPD和△AQD中,
,
∴△BPD≌△AQD(SAS),
∴PD=QD,∠ADQ=∠BDP,
∵∠BDP+∠ADP=90°
∴∠ADP+∠ADQ=90°,即∠PDQ=90°,
∴△PDQ为等腰直角三角形;
(2)当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:
∵∠BAC=90°,AB=AC,D为BC中点,
∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,
∴△ABD是等腰直角三角形,
当P为AB的中点时,DP⊥AB,即∠APD=90°,
又∵∠A=90°,∠PDQ=90°,
∴四边形APDQ为矩形,
又∵DP=AP=
AB,
∴矩形APDQ为正方形(邻边相等的矩形为正方形).
∵△ABC是等腰直角三角形,D是BC的中点
∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,
在△BPD和△AQD中,
|
∴△BPD≌△AQD(SAS),
∴PD=QD,∠ADQ=∠BDP,
∵∠BDP+∠ADP=90°
∴∠ADP+∠ADQ=90°,即∠PDQ=90°,
∴△PDQ为等腰直角三角形;
(2)当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:
∵∠BAC=90°,AB=AC,D为BC中点,
∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,
∴△ABD是等腰直角三角形,
当P为AB的中点时,DP⊥AB,即∠APD=90°,
又∵∠A=90°,∠PDQ=90°,
∴四边形APDQ为矩形,
又∵DP=AP=
1 |
2 |
∴矩形APDQ为正方形(邻边相等的矩形为正方形).
(1)连接AD,根据直角三角形的性质可得AD=BD=DC,从而证明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,则△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,从而证出△PDQ是等腰直角三角形;
(2)若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.
(2)若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.
正方形的判定;全等三角形的判定与性质;等腰直角三角形.
本题考查正方形的判定:邻边相等的矩形为正方形.也考查了等腰直角三角形斜边上的中线等于斜边的一半.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1若烃分子C6H14中有3个—CH3、2个—CH2—和1个—CH—
- 2若进货价降低8%,而售出价不变,则利润(按照进货价而定)可由目前的P%增加到(P+10%),求P.
- 39又2001分之2000乘2010等于
- 4x趋于0负时,sinx的绝对值的极限是什么?
- 5the peregrine falcon,to most people,is the very epitome of british birds of prey.3842
- 6一个数除以最大的一位数,商是最小的四位数,余数是最小的一位数,这个数是多少?
- 7大雪下大雪,雪中无人求下联
- 8在(-3)2中的底数是_,指数是_.
- 9中班语言教案《玩具宝宝回家了》
- 10热熔胶融化时产生的气味对人体有害吗?