当前位置: > 若函数f(x)=loga(2x^2+x) (a>0,a≠1)在区间(0,1/2)内恒有f(x)>0,解关于x的不等式f...
题目
若函数f(x)=loga(2x^2+x) (a>0,a≠1)在区间(0,1/2)内恒有f(x)>0,解关于x的不等式f
解关于x的不等式f(log2(9^x+2^(2x+1)+1))>f(2log4(6^x+4^(4x+1)+1))

提问时间:2020-10-30

答案
设T=2x^2+x
则X属于(0,1/2)时
T属于(0,1)
即f(x)=loga(T)在T属于(0,1)时
f(x)>0恒成立
则由图像可知:f(x)在(0,1)上单调递减
则有:00或X
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.