题目
过点P(-1,1)作直线与椭圆x24+y22=1交于AB两点,若线段AB中点恰为P点,求AB所在直线方程
提问时间:2020-10-30
答案
显然,AB不可能与y轴平行,否则A、B关于x轴对称,即AB的中点不可能是点P.
令AB的斜率为k,则AB的方程是:y-1=k(x+1),即:y=kx+k+1.
∴可设A、B的坐标分别是(m,km+k+1)、(n,kn+k+1).
联立:y=kx+k+1、x^2/4+y^2/2=1,消去y,得:x^2/4+(kx+k+1)^2/2=1,
∴x^2+2[k^2x^2+2k(k+1)x+(k+1)^2]-4=0,
∴(1+2k^2)x^2+4k(k+1)x+2(k+1)^2-4=0.
很明显,m、n是方程(1+2k^2)x^2+4k(k+1)x+2(k+1)^2-4=0的两根,
∴由韦达定理,有:m+n=-4k(k+1)/(1+2k^2),
∴(m+n)/2=-2k(k+1)/(1+2k^2).
∵P是AB的中点,∴(m+n)/2=-1,∴-2k(k+1)/(1+2k^2)=-1,
∴2k(k+1)=1+2k^2,∴2k^2+2k=1+2k^2,∴k=1/2.
∴AB的方程是:y=(1/2)x+1/2+1,即:x-2y+3=0.
令AB的斜率为k,则AB的方程是:y-1=k(x+1),即:y=kx+k+1.
∴可设A、B的坐标分别是(m,km+k+1)、(n,kn+k+1).
联立:y=kx+k+1、x^2/4+y^2/2=1,消去y,得:x^2/4+(kx+k+1)^2/2=1,
∴x^2+2[k^2x^2+2k(k+1)x+(k+1)^2]-4=0,
∴(1+2k^2)x^2+4k(k+1)x+2(k+1)^2-4=0.
很明显,m、n是方程(1+2k^2)x^2+4k(k+1)x+2(k+1)^2-4=0的两根,
∴由韦达定理,有:m+n=-4k(k+1)/(1+2k^2),
∴(m+n)/2=-2k(k+1)/(1+2k^2).
∵P是AB的中点,∴(m+n)/2=-1,∴-2k(k+1)/(1+2k^2)=-1,
∴2k(k+1)=1+2k^2,∴2k^2+2k=1+2k^2,∴k=1/2.
∴AB的方程是:y=(1/2)x+1/2+1,即:x-2y+3=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1分解因式:1/16x的四次方-1/2x²y²+y²
- 2写一篇英语作文《my hobbies and my interest》 写成3段 100字左右
- 3阻止空气污染是非常必要的用英语怎么说
- 4I have worked in this city for about 30 years.同义句
- 5冰醋酸如果结冰了.怎么从试剂瓶中取出
- 6用4个棱长是15厘米的正方形玻璃框拼成一个长方形玻璃框,这个长方体玻璃框的表面积是多少厘米?
- 7我懂得了友谊作文 要用一两件事说明 450字以上
- 8已知x=2是函数f(x)=3^3+ax+3的一个极值点,求1.a的值?2.函数f(x)的单调区间
- 9设C是线段AB的黄金分割点(AC>BC),AB=4cm,则AC=_cm.
- 10关于溶解度的化学题 急~!