当前位置: > 设三阶方阵A的三个特征值为:λ1 = 2 ,λ2 = -1 ,λ3 = 3 , 则A的伴随矩阵对应的行列式| A* |为 __________...
题目
设三阶方阵A的三个特征值为:λ1 = 2 ,λ2 = -1 ,λ3 = 3 , 则A的伴随矩阵对应的行列式| A* |为 __________
设三阶方阵A的三个特征值为:λ1 = 2 ,λ2 = -1 ,λ3 = 3 , 则A的伴随矩阵对应的行列式| A* |为 ______________.

提问时间:2020-10-30

答案
因为 A*A^* = |A|E 两边再取行列式
|A|*|A^*|=|A|^3(上角标为3,因为为3阶矩阵)
|A^*|=|A|^2
矩阵A的行列式为特征值的乘积即|A|=2*(-1)*3=-6
所以|A^*|=(-6)^2=36
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.